321章 自己挖的坑,含泪也要填上
书海居 m.shuhaiju.net
321章 自己挖的坑,含泪也要填上(第 3/3 页)
“现在是21世纪,需要使用21世纪的新方法。”
“第五种方法,函数构造方程,就是它了。”
完善哥猜的第五种证法,沈奇需要做一些铺垫。
引理1:威尔逊定理
引理2:欧拉公式e^±iθ=cosθ+isinθ
引理3:代数基本定理
引理4:伽马函数性质1:Γ(x)Γ(1-x)=π/sinπx,0<x<1
引理5:伽马函数性质2:伽马函数的定义域x?{γ∈Z∣γ≤0},反之,x∈{γ∈Z∣γ≤0}时,Γ(x)=∞,或者说此时Γ(x)无意义。
引理6:在通常复数的加法、乘法运算下,有理数集Q是一个域。
引理7:在通常复数的加法、乘法运算下,Q上的全体代数是一个域。
根据引理7,沈奇顺手花了10分钟时间证明了引理8。
引理8:如果a是代数数,θ是超越数,那么a与θ的积 aθ必然是超越数。
八个引理的铺垫做完,框架搭好了,沈奇水到渠成写出了哥猜第五证法的核心内容。
这个核心是一个函数构造方程:cos(1+Γ(x)/x+1+Γ(2n-x)/2n-x)π+isin(ρx+b)π=-1
哥猜1+1的问题,经过沈奇自然而然的巧妙处理,最终转化为对上述函数构造方程的求解。
严格求解验证了这个函数构造方程,等价于解决了哥猜1+1问题。
为此沈奇花费了整整三天的时间,他闭门不出,暂时忘记了物理学进度、欧洲重要活动和两个研究生的动向。
但每天给欧叶打个电话不能忘。
三天后沈奇完稿,全新的哥猜第五证法没有问题,函数构造方程有解,哥猜1+1问题被他顺手解决。
书友们都在看